
mm-Humidity: Fine-grained Humidity Sensing
with Millimeter Wave Signals

Qinglang Dai∗†, Yongzhi Huang∗†, Lu Wang∗, Rukhsana Ruby ∗, Kaishun Wu∗
∗College of Computer Science and Software Engineering, Shenzhen University

†These authors contributed equally to this work
Email: {daiqinglang2016, huangyongzhi}@email.szu.edu.cn, {wanglu,ruby,wu}@szu.edu.cn

Abstract—Atmospheric humidity is a significantly important
factor in our daily lives, as it is closely bound up with agriculture,
industrial production, human health and so on. Therefore,
efficient and precise humidity measurement techniques are indis-
pensable. However, the existing off-the-shelf techniques, including
the dry and wet bulb hygrometer, humidity sensor as well as
WiFi based detector, all fail to achieve a sensitive, accurate
and convenient humidity measurement, especial for a large scale
deployment. In this paper, we observe that different levels of
water vapor have certain impact on millimeter wave (mmWave)
signals in indoor environments. Accordingly, we propose an fine-
grained environmental humidity sensing technology via wireless
signals in the mmWave band. However, mmWave signals are
not only sensitive to humidity, but also other environmental
factors, such as oxygen. To establish a linear relationship between
humidity and mmWave signal propagation, we exploit a subspace
projection technique to remove the environmental noise. Upon
extracting the humidity-associated features in the noise-free
signal, we utilize support vector machine (SVM) to model the
humidity measurement classifier of a certain place. Extensive
experiments have been conducted in different scenarios in order
to verify the effectiveness of the proposed system. Results show
that the average accuracy of humidity measurement is up to
85% when the humidity interval is 3%, and is 95% when the
humidity interval is 5%. We further show that the proposed
method is very sensitive to the humidity dynamics and is 63.2
times faster compared to the traditional hygrometers.

I. INTRODUCTION

Nowadays, people are paying more attention to the changes

of the environment and climate. Atmospheric humidity is one

of the most important metrics of the weather condition, which

affects the industrial production and the human health. Human

beings usually feel comfortable when the air has 45%- 55%

humidity, which is also beneficial to their health and life. Dry

bulb hygrometers and electronic hygrometers are the two most

popular off-the-shelf humidity measurement devices. However,

these devices have some flaws in terms of sensitiveness to

respond, convenience for large scale deployment and so on.

Consequently, in this paper, we strive to propose a more

effective method to measure the environmental humidity.
Typically, monitoring humidity at the fine-grained level is a

labor and resource intensive task. In the recent days, extensive

research had been conducted to inspect fine-grained items

using wireless signals. For example, WiFi devices were used

by researchers for accurate motion detection and environment

monitoring, such as Wi-Fire [1] and RT-Fall [2]. WiHumidity

[3] also used the WiFi signal to measure the environmental

humidity, however with not-so-good accuracy. The key reason

lies in frequency band of the WiFi signal, where humidity has

little impact on the WiFi signal propagation. On the contrary,

Fig. 1: A sample example that RSSI of the mmWave signal
changes with the humidity.

it is observed that the wireless signal in the millimeter wave

(mmWave) band is more sensitive to humidity [4] compared

to the WiFi signal, as water vapor has certain effect on the

mmWave signal propagation. In the meanwhile, according to

the eight Key Performance Indicators (KPI) [5] of IMT-2020,

mmWave communication is widely regarded as one of the

most important technologies of the future network, for its ultra-

wide bandwidth and high data rate achievable to 10Gbits/s.

Therefore, in the future, WiFi devices will be complemented

by mmWave technology, and the equipment associated with 60

GHz band have become increasingly popular and affordable

for daily use.

When talking about millimeter-wave propagation models

(MPM) [6], comprehensive wave propagation factors should

be taken into consideration, including the oxygen, water vapor,

rainfall, fog and aerosols in the air, etc., as they lead to

diffraction, refraction and absorption of electromagnetic waves

below 1000 GHz. The MPM model captures the absorption

of oxygen in the air by 60 GHz, yet in the meantime, the

composition of water vapor in the air has little effect on the 60

GHz signal. These models are built based on the long-distance

communication. In this paper, via thorough experimentation,

we observe that the dynamics of humidity have certain impact

on the quality of communication in the indoor environment.

Therefore, we propose to utilize mmWave for humidity de-

tection in indoor environment. The idea is straightforward,

yet it is non-trivial to achieve an accurate humidity detection

via mmWave signals. As the wavelength of the mmWave

signal is much smaller than that of the WiFi signal, it is

sensitive to the fine-grained changes of environmental entities,

not only the water vapor, but all other factors. As the distance
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between the sender and the receiver becomes close in the

indoor environment, other factors, such as oxygen, or RF

noise also influence the change of humidity. The effects from

various factors are entangled with each other, making it a great

challenge for reliable and accurate humidity detection.

In order to overcome the above mentioned chanllenges,

we bring some innovative methods for the purpose of hu-

midity measurement while exploiting the characteristics of

the mmWave signals. The first one of which is Subspace

Projection Method (SPM), which is used to exploit the features

of the fine-grained channel state information (CSI) in the high

dimensional matrices. SPM is able to project the original high-

dimensional matrix into a new subspace and concentrates the

features on the low-dimensional subspace. By removing the

high dimensional subspace, the dimensionality reduction of the

high-dimensional matrix is achieved. Subspace projection has

two common sub-methods, which are Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA).

However, since the effect of humidity feature on the signal is

not acute because of the larger noise signal, we concentrate the

noise signal in the low-dimensional subspace. Followed by the

usage of PCA and LDA and then projecting CSI twice, we find

that the fluctuation characteristics of the noise signal can be

moved to the low-dimensional subspace. Therefore, removing

the low-dimensional subspace is equivalent to removing noise

signals. This is the core idea of our proposed Humidity

measurement method and we name it mm-Humidity. We

find that the denoised signal characteristic matrix with respect

to (w.r.t.) different humidity has different amplitudes in the

same dimension. As a result, this makes the distribution of

the signal characteristic matrix significantly different in the

hyper dimensional space. Therefore, we can adopt supervised

learning-based classifiers to classify feature signals. We build

the training set with the feature signal matrix and the real

humidity values from the wireless hygrometer in order to

model a SVM classifier that can find the hyperplane to cut

the hyper dimensional space.

The contribution of our article has the following points.

First, we are the first one to find that the change of humidity

affects 60 GHz signal in indoor environments. Based on this

insightful observation, we develop our humidity measurement

system while exploiting the signal in the 60 GHz band.

Besides, this work provides a new understanding of the prop-

agation model of 60 GHz signal in the indoor environment.

Second, we are the first one to use SPM for perceiving

the complex changes of 60 GHz signals, which paves the

way to understand the wireless signal in a different and

useful manner. Third, we achieve a reasonably accuracy in

humidity measurement using our mm-Humidity compared to

the traditional methods and devices.

II. RELATED WORK

A. Humidity detection

There are two main types of equipment for measuring

humidity: one is dry and wet bulb hygrometer and the other

one is humidity sensor. The dry and wet bulb hygrometer

Fig. 2: A sample simulated plot to show the specific attenua-
tion of the signal under different relative humidity values (0-
100% RH)(curves 1 to 8 are eight different relative humidity
values at 0%, 1%, 3%, 10%, 25%, 50%, 75% and 100%RH.

consists of two thermometers. The humidity measurement by

this method is usually relatively slow. This is due to the fact

that we can not measure the humidity until the values of two

thermometers are stable enough. The second equipment is the

humidity sensor, which are usually of two main types: resistive

and capacitive. However, the humidity sensor is not convenient

for large-scale deployment.

In addition to using humidity sensors, some use mmWave

signal to measure atmospheric climate condition. David [10]

has proposed a new technique to estimate Humidity using the

existing wireless communication networks, which overcomes

the existing obstacles of detecting water vapor near the surface.

Leijnse [11] uses 38 GHZ signal to measure the rainfall

and its dynamics. Messer [12] demonstrates a technique to

measure the intensity of the received signal level in a cellular

network using the DFR (digital fixed radio) systems. This work

provides a reliable method to measure the ground rainfall, and

can be used with other rainfall measuring instruments, such as

radar, in order to bring more accuracy. Via exploiting the signal

of the 50 GHz band, Minda [13] uses a simple (DSD) model

to compare the rainfall measurement on the disdrometer and

tipping-bucket rain gauge.

B. 60 GHz Communication and Channel State Information

In the near future, the network traffic will reach at about

12 times that of 2016. To achieve this traffic requirement,

a higher frequency band is taken into consideration. As the

characteristics of future mobile networks [14] are beyond our

imagination, the research on the signal of unused 60 GHz

mmWave band is one of the topics nowadays.

In the early days, IEEE 802.15TG3c and IEEE 802.11TGad

standards were used to characterize the communication over 60
GHz band in indoor environments. On the attempt to transmit

a large number of high-quality medical image data, Kyro [7]

established a new model. Olivier [8] and Han [9] found that 60
GHz signal can also be used for indoor positioning. Moreover,
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the researchers used WiFi devices to perceive humanistic and

environmental activities [2], which detects movement using

WiFi signal. In addition, there are studies on environmental

fire, Wi-Fire [1], which uses WiFi signal to detect the fire

events in indoor environments. All of these studies use CSI to

detect subtle changes in the environment.

III. OBSERVATION

A. Millimeter-Wave Propagation Mode

The propagation of electromagnetic waves in the air is

affected by many factors, among which the atmospheric

environment is one of the important ones. mmWave Prop-

agation Mode (MPM) [6] is the propagation model of the

electromagnetic waves (including mmWave and submillimeter

wave) below 1000 GHz. This model takes many deteriorating

factors, such as oxygen, water vapor, rainfall, fog and aerosol

into account. These atmospheric components mainly cause

diffraction, refraction and absorption to the electromagnetic

waves. The model consists of three parts. The first part is

the refractive index N0 of the electromagnetic wave in the

air, the second part is the dispersion metric N ′(f) of the

refraction, and the third part is the absorption metric N ′′(f)
of the atmospheric composition in the electromagnetic wave.

If f is the frequency of the electromagnetic wave, the total

complex refractive index N can be expressed as

Due to the space limitation, we only briefly demonstrate

the derivation process of the model. The refractive index of

the electromagnetic wave in the air N0 is not related to the

frequency of electromagnetic waves, but related to atmospheric

pressure, vapor pressure and temperature. The dispersion of

refraction N ′(f) and the absorption of electromagnetic waves

N ′′(f) needs to consider different atmospheric molecules.

Typically, the air has 78% nitrogen, 21% oxygen, 0.031%

carbon dioxide, and 0.939% rare gas. We know that the absorp-

tion of electromagnetic waves by atmospheric components is

mainly related to the resonance frequency of gases. Although

nitrogen is the main component of air, nitrogen only affects the

signal at the band greater than 100 GHz. Since the influence

of carbon dioxide and rare gases in indoor short distance

communication is very small (close to 0) , we do not consider

it in the derivation process of the model. Therefore, the entire

complex model is simplified to a model associated with the

effect of only oxygen and water vapor. When we separate

oxygen from the stream, we get the attenuation of oxygen and

the attenuation of water vapor. According to the parameters

given by MPM, as shown in Fig. 2, the effect of oxygen on

the signals near the 57-63 GHz band is very stable, all of

which are 14.9 dB/km. Therefore, the attenuation of signal

due to oxygen is only related to the propagation distance.

When the temperature is constant, the complex refractive index

Nwater of water vapor has a positive correlation with the

Humidity2, that is Nwater ∝ Humidity2, and increases with

the increasing Humidity. Therefore, in indoor environments,

when the temperature is constant, the total refractive index

the electromagnetic wave in the air is

Fig. 3: System overview.

N = Noxygen +Nwater(f) (1)

when the antenna is fixed. However, the change of signal

strength on 60 GHz band due to the change of humidity is only

0.4-0.9 dB/km range, far less than the attenuation of oxygen

of 60 GHz signal.

N = 3.336[N0 +N ′(f)] + j · 0.1820fN ′′(f) (2)

and dB/km as a unit. Generally speaking, this is the effect of

MPM on the RSSI of 60GHz signals. From the numerical

analysis, we conclude that the contribution of humidity to

signal attenuation is very small compared to that of oxygen.

Therefore, people tend to ignore the influence of humidity on

60 GHz signal. Consequently, in the following, we demon-

strate the process to capture such small changes of signal

attenuation w.r.t. the humidity.

B. Channel State Information

Since the change of signal attenuation due to the change of

humidity is very small, the influence of noise is acute on 60
GHz signal. In order to magnify the features, we find that

the usage of channel state information (CSI) is an elegant

technique [1]. CSI is a channel gain information from the

transmitter to the receiver in the OFDM system. According

to the equations ,

Y = HX +N (3)

Ĥ =
Y

X
= H +

N

X
(4)

Ĥhumidity = Ĥdry +Δhumidity (5)

where Y and X is respectively the vectors of the receiver

and the transmitter, H is the channel state matrix, and N

is the ambient noise, Ĥ is the estimated value matrix of

each subcarrier’s CSI, Ĥhumidity is the CSI affected by the

humidity, ˆHdry is the CSI of the 52 subcarriers in the dry gas,

and Δhumidity is the effect of humidity change on the signal,

which is a different constant vector. The noise of different

subcarriers is independent to each other, that is the correlation
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Fig. 4: The effect of humidity on CSI (before denoising). Fig. 5: The effect of humidity on CSI (after denoising using
PCA and LDA).

coefficient among the noise signals of different subcarriers is

0. Therefore, there must be a sampling period T, which makes

52∑

i=1

Ĥi
humidity(T ) =

52∑

i=1

Hi(T ) + T ·
52∑

i=1

Δi
humidity (6)

where Ĥi
humidity(T ), H

i(T ) ∈ R52×T is the CSI matrix

space, t is time and i is the subcarrier index. Therefore, the

usage of CSI can magnify the features of wireless signals.

Although humidity has little effect on the 60 GHz signal, the

CSI of each subcarrier is positively related to humidity. The

accumulation of such changes can make the characteristics

of signal changes more obvious, which is shown in Fig. 4.

Although the previous method of using CSI is proven to be

feasible, the ideal sampling period T is considered to be long,

which makes the measurement process of humidity very slow.

If the ideal sampling period is not adopted, it would lead to the

amplification of the signal change characteristics. On the other

hand, the CSI of each subcarrier has a huge noise. This noise

signal makes the relationship between the signal attenuation

and the changes humidity a complex non polynomial relation.

If the relationship is not properly inferred, the measurement of

humidity may result in inaccuracy. Therefore, in the following,

we demonstrate the way to remove these noises.

IV. SYSTEM DESIGN

mm-Humidity is a system that uses the wireless signal

of 60 GHz band to measure humidity. As shown in Fig. 3,

this system consists of three main modules: Sensing module,

Processing module and Output module. The Sensing module

is made up using a IQX60G development system. The Pro-

cessing module is composed of two operations: denoising and

classification. The Output module is composed of a database

and a humidity indicating instrument. mm-Humidity mainly

has two different processes: one is the training process and

the other one is the test process.

During the training process, the sensing equipment IQX60G

system sends out electromagnetic waves, and the receiver

obtains the CSI via demodulation. Upon denoising, the system

constructs the training set from the resultant CSI. The indoor

wireless hygrometers calculates the precise environmental

humidity after the humidity information is passed through the

Kalman filter. These data are the parts of the training set as

the true labels. Upon the construction of the training set, we

model the classifier using SVM. In the test process, the system

denoises the CSI received by the receiver, and then uses the

constructed classification model to measure humidity.

A. De-noise
Since the noise affects the accuracy of judgement to a

large extent, the relationship between the change of signal

and that of humidity becomes a complex non-polynomial law.

In order to remove these noises, we find that the noise is

concentrated in the high frequency signal, and so we use the

traditional low-pass filter. After sorting the filtered results, we

find that although the recognition accuracy is improved, the

overall effect due to the change of humidity is still very poor.

Therefore, we decide not to use the traditional low-pass filter

for removing noise. However, we think about the subspace

projection method for removing noise while considering the

magnification of features in the signal due to the humidity

change.
The subspace projection technique is a common dimen-

sionality reduction method, which is made up with two main

sub-methods: principal component analysis (PCA) and linear

discriminant analysis (LDA). PCA is used to find a subspace

whose base vector corresponds to the maximum variance of

the direction in the original space. LDA searches for vectors

that can best distinguish between features in the underlying

space. The CSI of each subcarrier is stable without considering

the noise. As shown in Fig. 5, the attenuation of the oxygen

in the 60 GHz signal is constant. Ideally, the CSI due to

different humidity should be perpendicular to the curve of

the transverse axis. In reality, each subcarrier is affected by

different Gaussian noise. Therefore, the influence of noise

causes the location of the actual point to move around the

ideal point. When subspace projection is applied on real data,

noise becomes a feature of CSI. When the receiver receives

the CSI of each subcarrier, we know

Ĥi
humidity(t) = Hi(t) + Δi

humidity +
N i(t)

X
(7)

As a result, the intra class scatter matrix is

Sw =
52∑

i=1

∑

t

(Ĥi
humidity(t)− μi)(Ĥ

i
humidity(t)− μi)

T (8)

and interclass scatter matrix

Sb =

52∑

i=1

(μi − μ)(μi − μ)T (9)
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Fig. 6: A sample schematic diagram to show the eligibility
of the subspace projection method.

Fig. 7: The detailed process of the denoising sub-module.

Consequently, we can obtain the projection matrix

W = argw max{(WSwW
T )−1(WSbW

T )} (10)

where i is the mean of the class μi, the μ is the mean of

all classes, the projection matrix W ∈ R52×d and d is the

dimension of the subspace. Using projection matrix, we obtain

the projection of the subspace

Y = WT Ĥhumidity (11)

The subspace Y is given a second projection to get

Z = Y APT s.t.PTP = I (12)

where A ∈ Rd×c is a subspace learning matrix and satisfies,

A = (Y TY )−1Y TZP (13)

svd(ZTY A) = UDV T (14)

P = UV T (15)

P ∈ Re×c is an orthogonal rotation matrix and e is the final

subspace dimension.

As we mentioned previously that noise signal greatly affects

the accuracy of the humidity measurement. The main source

of these noise is the WiFi NICs at the sender and the

receiver. There are many reasons for this, including changes in

transmission power, transmission rate adaptation, and changes

in internal CSI reference levels. These noises are a high-

energy impulse noise. To eliminate these noises, we find that

the correlation of these high-energy impulse noises on each

channel is very low, which makes the influence of noise

on the channel rich in characteristic information. As shown

in Fig. 6, humidity is different for the signal under ideal

conditions, so the true value should be distributed on the

red dotted line. Therefore, the ideal CSI should be a stable

value. However, the effect of noise on the signal increases the

signal variance. Therefore, such fluctuations are characterized

by very noisy noise. Since the noise of each channel is

different, we can use subspace projection techniques. Subspace

projection techniques are often used to find features in high

dimensional matrices. The method is to project the original

high-dimensional matrix into a new subspace and focus the

features on the low-dimensional subspace. Using this method,

we can remove the noise. Fig. 6 is a simple diagram. As shown

in Fig. 6, the features brought by the noise are projected into

the subspace. As shown in Fig. 7, removing low-dimensional

subspaces can make these high-energy impulse noises well

removed. After two projections, we can transfer the fluctuation

characteristics brought by noise signals to the front dimension.

Therefore, when we remove the preceding dimension, a large

number of noise signals are also removed.

B. Acquisition of Environmental Humidity

We know that the generation, transmission and reception of

signals will inevitably be affected by external environmental

disturbances and internal equipment noise. In order to obtain

the accurate humidity, the commonly used methods include

the average method, the mode number method, the outlier

method and so on. However, these methods do not take the

fluctuant equipment noise into account, and hence the accurate

measurement of the humidity cannot be achieved. Therefore,

we choose to use Kalman filter to solve this problem. Kalman

filtering is a linear model of different states of a system. We

define the system state variables as Xk ∈ �n, the system

matrix as Ak ∈ �n, the state matrix as Bk ∈ �n, the system

control input as Uk, the system process excitation noise as Wk,

the observation variable as Zk ∈ �m, the observation matrix

as Hk and the observation noise as Vk. As a result, we obtain

Xk = AkXk−1 +BkUk +Wk (16)

Zk = HkXk + Vk (17)

P (k|k − 1) = P (k|k − 1) +Qk (18)

K(k) =
P (k|k − 1)

P (k|k − 1) +Rk
, (19)

k is the current moment. It is common that there is a certain

level of error in measuring humidity. The source of the error

may be due to the equipment or the external gas. Let us denote

the resultant noise due to the error as wk, the variance of

which is denoted as Qk, where Qk = 0.01. According to the

reading of the manufacturer, the variance of error obtained by

a hygrometer is Rk = 0.25RH. Assuming the measurement

noise as Vk, solving the Kalman gain coefficient K(k) by the

minimum mean square error matrix P (k|k − 1) at present time

using the stochastic differential equation in (16), the optimal

estimate of the current state can be obtained. Thus, we obtain

the precise value of ambient humidity for each measured

humidity value.
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Fig. 8: A sample sketch map of the equipment placement
for mm-Humidity.

Fig. 9: Three different positions in the shielding room,
where the experiments were conducted.

C. Classification

We use SVM to model the change of 60 GHz signal

and classify different humidity values. SVM is a supervised

learning model. Given a set of training samples x1, x2..., xN

with tag y1, y2..., yN , we can predict yN+1 from a given

sample xN+1. The SVM model is simplified as

min
w

‖w‖2
2

(20)

where w is the parameter of the SVM model. In order to

obtain the best clustering results, we use the dual optimization

technique. By solving the Lagrange equation and selecting the

radial basis function (RBF) , the samples are transformed from

the low-dimensional space to the high-dimensional space, and

finally the classification process is completed.

V. EVALUATION

We conduct a series of experiments to evaluate the per-

formance of mm-Humidity. As mentioned previously, we use

the IQX60G development system as the sensing board to

implement the mm-Humidity system. The IQX60G system

works in the 57-66 GHz common band with a bandwidth

of up to 1.8 GHz. Moreover, mm-Humidity uses the OFDM

modulation mode, and the rest of the other parameters are as

same as that of IEEE 802.11a system. A total of 52 subcarriers

is used, and each subcarrier occupies 312.5 kHz bandwidth

and the data rate is 24 Mbps. mm-Humidity uses 60.64 GHZ

mmWave to transmit and receive, and the sampling rate is

100 Hz. The sensing device collects the RF data, and then

extracts the CSI data via an MATLAB program. Since the

system uses beamforming technology, the angle of signal beam

is only 3o. Therefore, our experimental scenario can ignore

the interference signals coming from other technologies or

devices. We setup the experiments in a shielding room with

12 × 6 m2 size. The temperature in the indoor environment

is set to 30oC. We put and enclosed space with 3 × 2 × 1
m3 size in the shielding room. The space is wrapped by

transparent plastic film to prevent the external environmental

and external gases from interfering with the environment. In

the confined space, we use 4 humidifiers and 4 dehumidifiers

(as shown in Fig. 8) in the bottom of the space, 4 sides and

different positions, as shown in Fig. 9. We placed 6 electronic

hygrometers in different places of the confined spaces. We

collect data once every 1% relative humidity. The ambient

humidity ranges from 36%RH to 96%RH.

A. Different Intervals

Our experiment is carried out in enclosed space in the

shielding room. In confined space, the specific placement of

the device is shown in Fig. 3. In order to ensure the stability

of the experiment, we use the central air conditioning to

control the ambient temperature at 30oC. We first use the

dehumidifier to reduce the air humidity in the confined space to

a minimum of 30%RH. Then the humidifier is started to slowly

increase the humidity in the confined space. The humidifier

stops running every 10 seconds and waits for a period of

time to observe the changes of readings in 6 hygrometers.

When we calculated the reliability of the current humidity

change 1%RH more than 90% by calculating the humidity of

6 hygrometers, we began to sample the environmental data.

The humidity range of the experiment was at 36%RH-96%RH.

The frequency of sampling is 100 Hz, and the sampling time

is 1 minutes. In order to prevent other external factors from

interfering with the experiment, we divided the experiment

into 30 days. The experiment was carried out for 10 days

both the early in the morning and the late in the evening. Fig.

11 draws a confusion matrix of different humidity intervals.

In the humidity range sampled, we divide the data set into

3 groups, the humidity interval in the group is 3%RH. We

also divide the data into 5 groups, with a humidity interval of

5%RH. Through the evaluation of the proposed method, we

find that the recognition accuracy is lower at 3%RH humidity

interval, and the recognition accuracy is greatly improved at

5%RH interval. According to Fig. 10, the average accuracy is

about 83.5% when the humidity interval is 3%, and is about

94.5% when the humidity interval is 5%.

B. Different Position

we further test the mm-Humidity system in order to verify

its robustness. We painted three areas in the shielding room,

as shown in Fig. 12, Position 1, Position 2 and Position 3.

Position 1 and Position 3 are in the two corners of the shielding

room, respectively, so that the enclosed space is only 10-15 cm

from the wall. Since the different location of transmitter and

receiver from the two walls, the multipath effect and diffused

reflection effect are different. Therefore, it is possible to verify
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(a) (b)

Fig. 10: Accuracy of different humidity values, when (a) the humidity interval in 3%, (b) the humidity interval in 5%.

(a) (b)

Fig. 11: A sample confusion matrix of humidity recognition accuracy from different samples, when (a) the humidity interval
in 3%, (b) the humidity interval in 5%.

the robustness of the system under the influence of multipath

effect and diffused reflection effect. We first completed data

acquisition and model training in Position 2, and we use

the test set to evaluate the training model using the data at

Position 2. As shown in Fig. 9, we find that the recognition

precision of position 2 can reach 85% when the humidity

interval is 1%RH, and the recognition accuracy is 90% when

the humidity interval is 6%RH. Then we put the experimental

equipment in Position 1 and Position 3 to collect data. It is

found that the accuracy of the system at different locations is

greatly reduced, and the accuracy of humidity measurement

is only 78% and 70% when the interval is 1%RH. When

the humidity interval reaches 6%RH, the performance of the

system is significantly improved, which indicates that the

effect of humidity on the 60 GHz signal is greater than the

accumulated multipath and the diffused reflection effects when

the humidity interval is 6%RH.

C. Sensitivity Inspection

In order to know whether our system is sensitive enough

with the environmental changes, we conducted a 20 minute

sensitivity test. We first let the mm-Humidity system complete

enough training models. Then we let the humidity in the

confined space reach a stable state, and then we began to

experiment. We randomly select several humidifiers or some

dehumidifiers to turn all these devices on or off. The humidity

values measured by hygrometer and mm-Humidity system

are recorded every minute. Fig. 13. shows the results of

the sensitivity test. We can see that at the third minute,

the mm-Humidity system began to detect a large increase

in the humidity of the environment, while the hygrometer

was able to detect the changes of the humidity at the fourth

minute. Therefore, we can conclude that the sensitivity of the

mm-Humidity system is faster than that of the hygrometer.

Moreover, we observe that the mm-Humidity system is 63.2

times faster than the hygrometer.

D. Comparison with 2.4 GHz WiFi Signal

All of the aforementioned results show the advantages of

our system. Now, we have a question: can the same system be

effective for 2.4 GHz WiFi signals? We placed Access Point

next to the 2.4 GHz device in order to send and receive signals

at the same time. Access Point sends 100 packets per second

to the receiver. The extracted CSI is denoised, trained and

classified. The accuracy of the system can be calculated under

different humidity intervals. As shown in Fig. 14, using 2.4
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Fig. 12: The average accuracy of different humidity
values under different positions.

Fig. 13: The measurement accuracy comparison between
mm-Humidity and the hygrometer.

Fig. 14: Performance comparison between mm-Humidity sys-
tem and that with 2.4 GHz WiFi Signal.

GHz’s WiFi signal, the same system achieves 88% recognition

accuracy even when the interval is 10%RH, while the mm-

Humidity system can achieve 98% recognition accuracy.

VI. CONCLUSION

In this paper, we proposed a novel mmWave signal-based

humidity measurement system, which takes the advantages of

the truth that the mmWave signal is sensitive to humidity.

Different from the existing methods to measure humidity, we

chose the mmWave signal and proposed a new signal process-

ing mechanism, the subspace projection method, in order to

realize an accurate measurement of environmental humidity.

As part of the mechanism of the system, we collected the

RF data, and then extracted the CSI in a confined humid

environment. Then, we projected the signal into different sub-

spaces in order to eliminate the noise signal from the original

signal via PCA and LDA algorithms. Finally, we extracted the

features of humidity and applied the SVM classifier in order

to infer the humidity values in the 36%− 96%RH range. Our

observation said that mm-Humidity can reach 95% cognition

accuracy when the humidity interval is 5%. Moreover, the

measurement speed of the mm-Humidity system is 63.2 times

faster than that of the electronic hygrometer. In comparison

with WiFi signal, the recognition accuracy is also higher than

10%. However, there are still some problems in the system, for

example, in the case of interference, the detection results are

relatively poor. In the future work, we think that researchers

can explore in solving the direct vision interference problem

in order to improve the accuracy further [15].
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